Looking Up – Bob Eklund

Pluto_faultsWhen NASA’s New Horizons spacecraft buzzed by Pluto last year, it revealed tantalizing clues that the dwarf planet might have—or had at one time—a liquid ocean sloshing around under its icy crust. According to a new analysis led by Brown University, such an ocean likely still exists today.

The study, which used a thermal evolution model for Pluto updated with data from New Horizons, found that if Pluto’s ocean had frozen into oblivion millions or billions of years ago, it would have caused the entire planet to shrink. But there are no signs of a global contraction to be found on Pluto’s surface. On the contrary, New Horizons showed signs that Pluto has been expanding.

“Thanks to the incredible data returned by New Horizons, we were able to observe tectonic features on Pluto’s surface, update our thermal evolution model with new data and infer that Pluto most likely has a subsurface ocean today,” said Noah Hammond, a graduate student in Brown’s Department of Earth, Environmental and Planetary Sciences, and the study’s lead author.

The pictures New Horizons sent back from its close encounter with the Kuiper Belt’s most famous denizen showed that Pluto was much more than a simple snowball in space. It has an exotic surface made from different types of ices—water, nitrogen, and methane. It has mountains hundreds of meters high and a vast heart-shaped plain. It also has giant tectonic features—sinuous faults hundreds of kilometers long as deep as 4 kilometers. It was those tectonic features that got scientists thinking that a subsurface ocean was a real possibility for Pluto.

“What New Horizons showed was that there are extensional tectonicnh-pluto-bw-series-7-6-2015_0 features, which indicate that Pluto underwent a period of global expansion,” Hammond said. “A subsurface ocean that was slowly freezing over would cause this kind of expansion.”

Scientists think that there may have been enough heat-producing radioactive elements within Pluto’s rocky core to melt part of the planet’s ice shell. Over time in the frigid Kuiper belt, that melted portion would eventually start to refreeze. Ice is less dense than water, so when it freezes, it expands. If Pluto had on ocean that was frozen or in the process of freezing, extensional tectonics on the surface would result, and that’s what New Horizons saw.

The thermal evolution model run by Hammond and his colleagues showed that because of the low temperatures and high pressure within Pluto, an ocean that had completely frozen over would quickly convert from the normal ice we all know to a different phase called ice II. Ice II has a more compact crystalline structure than standard ice, so an ocean frozen to ice II would occupy a smaller volume and lead to a global contraction on Pluto, rather than an expansion.

Taken together, the new model bolsters the case for a liquid ocean environment—which could even be a habitat for living creatures—in the furthest reaches of the solar system.

“That’s amazing to me,” Hammond said. “The possibility that you could have vast liquid water ocean habitats so far from the Sun on Pluto—and that the same could also be possible on other Kuiper belt objects as well—is absolutely incredible.”

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Actors' Gang

Be the first to comment

Leave a Reply

Your email address will not be published.


*


This site uses Akismet to reduce spam. Learn how your comment data is processed.