Saturday December 16th 2017
CulverCityCrossroads.com 2.0 coming soon

Get the latest news from Culver City Crossroads delivered right to your inbox!


to Culver City Crossroads' RSS email feed for FREE. Once a day, you'll get local news, events and commentary from people who live here, work here, and love it.

If you enjoy reading or find value in the information we provide, please consider supporting the many hours of effort we put in to make this online newspaper available every day. You can easily make a one-time or monthly recurring donation by clicking the link below.

Thank you for your support!

Staff

Publisher and Editor - Judith Martin-Straw

The Skinny - Amy Brunell

Looking Up - Bob Eklund

Ruth's Truths - Ruth Morris

Special Features - T. S. Owen

LOCALmotion - Jozelle Smith

Get Smart - Jamie Wallace

Looking Up – Bob Eklund

pia21133-16-640x350Laser-zapping of a globular, golf-ball-size object on Mars by NASA’s Curiosity rover confirms that it is an iron-nickel meteorite fallen from the Red Planet’s sky.

Iron-nickel meteorites are a common class of space rocks found on Earth, and previous examples have been seen on Mars, but this one, called “Egg Rock,” is the first on Mars examined with a laser-firing spectrometer. To do so, the rover team used Curiosity’s Chemistry and Camera (ChemCam) instrument.

Scientists of the Mars Science Laboratory (MSL) project, which operates the rover, first noticed the odd-looking rock in images taken by Curiosity’s Mast Camera (Mastcam) at a site the rover reached by an Oct. 27 drive.

“The dark, smooth and lustrous aspect of this target, and its spherical shape, attracted the attention of MSL scientists when we received the Mastcam images at the new location,” said ChemCam team member Pierre-Yves Meslin, at the Research Institute in Astrophysics and Planetology (IRAP), of France’s National Center for Scientific Research (CNRS) and the University of Toulouse, France.

ChemCam found iron, nickel, and phosphorus, plus lesser ingredients, in concentrations still being determined through analysis of the spectrum of light produced from dozens of laser pulses at nine spots on the object. The enrichment in both nickel and phosphorus at some of the same points suggests the presence of an iron-nickel-phosphide mineral that is rare except in iron-nickel meteorites, Meslin said.

Iron meteorites typically originate as core material of asteroids that melt, allowing the molten metal fraction of the asteroid’s composition to sink to the center and form a core.

“Iron meteorites provide records of many different asteroids that broke up, with fragments of their cores ending up on Earth and on Mars,” said ChemCam team member Horton Newsom of the University of New Mexico, Albuquerque. “Mars may have sampled a different population of asteroids than Earth has.”

In addition, the study of iron meteorites found on Mars—including examples found previously by Mars rovers—can provide information about how long exposure to the Martian environment has affected them, in comparison with how Earth’s environment affects iron meteorites. Egg Rock may have fallen to the surface of Mars many millions of years ago. Researchers will be analyzing the ChemCam data from the first few laser shots at each target point and data from subsequent shots at the same point, to compare surface versus interior chemistry.

Egg Rock was found along the rover’s path up a layer of lower Mount Sharp called the Murray formation, where sedimentary rocks hold records of ancient lakebed environments on Mars. The main science goal for Curiosity’s second extended mission, which began last month, is to investigate how ancient environmental conditions changed over time. The mission has already determined that this region once offered conditions favorable for microbial life, if any life ever existed on Mars.

Curiosity was launched five years ago this month, on Nov. 26, 2011, from Cape Canaveral Air Force Station, Florida. It landed inside Gale Crater, near the foot of Mount Sharp, in August 2012.

The rover remains in good condition for continuing its investigations, after working more than twice as long as its originally planned prime mission of about 23 months, though two of its 10 science instruments have recently shown signs of potentially reduced capability.

 

Share This Post
Share on FacebookShare on Google+Tweet about this on TwitterDigg thisShare on RedditShare on StumbleUponEmail this to someone

Leave a Reply